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The interactions between transition metal nanoparticles and their metal-
oxide supports are often critical for heterogeneous metal nanoparticle 
catalysts (1). However, the roles of the species involved are often not 
well understood, especially for supported Au catalysts, which are active 
for selective hydrogenations (2, 3), oxidations (3–5), and the water-gas 
shift (WGS) reaction (3, 6). Several factors have been suggested for the 
exceptionally high activity of Au catalysts, including quantum size ef-
fects (7), particle geometry (8, 9), and under-coordinated Au atoms (10–
12). 

Oxygen activation at the metal-support interface is widely regarded 
as the key step in room-temperature CO oxidation (13–17), but substan-
tial debate remains regarding the nature of the active site (9, 12, 17–23). 
Experimental studies indicate that materials lacking OH groups are inac-
tive (24, 25), yet, the dominant mechanistic models vary in the suggested 
role of support OH groups and generally highlight the possible role of 
oxygen vacancies (16, 17, 22–24, 26). Computational models also have 
not indicated a clear mechanistic role for the support OH groups, and 
isotope labeling studies indicate that CO and O2 react without incorpo-
rating oxygen from the support (21, 27). Perhaps most importantly, as 
Fig. 1A shows, water dramatically increases catalytic activity (20, 21, 
26, 27), yet only one proposed mechanism suggests a direct potential 
role for water (21). 

We performed an experimental and computational study to better 
understand how water, surface hydroxyls, and the metal-support inter-
face interact during CO oxidation over Au/TiO2 catalysts. The surface 
water and hydroxyl groups of a commercial Au/TiO2 catalyst were deu-
terated in-situ with flowing D2O/N2 (SM 3.1-3.2). The exchanged cata-
lyst was then flushed with N2 to remove excess D2O. Under these 
conditions, we measured a large kinetic isotope effect (KIE, kH/kD = 1.8 
± 0.1, Fig. 1B), consistent with a primary KIE, indicating O-H(D) bond 
cleavage in the rate-determining step (RDS). Previous studies on 
Au/Al2O3 catalysts (21, 28) found almost no rate difference (kH/kD ≈ 1 to 
1.2) upon switching H2O for D2O in the feed and concluded that an equi-

librium isotope effect might be in-
volved (21). However, adding 700 Pa 
H2O/D2O to the feed reduced the KIE 
to 1.4. This change was reversible: 60 
min after removing H2O/D2O from the 
feed, the KIE approached the original 
value (Fig. 1C). The large KIE under 
relatively dry conditions indicates that 
water or support OH must be involved 
in the reaction mechanism and that O-
H(D) bond cleavage occurs in a kinet-
ically important step. Further, the reac-
tion is subject to saturation kinetics, 
with added water affecting the kinetics 
of the RDS. 

We explored potential mechanistic 
roles of O-H bonds with density func-
tional theory (DFT) studies using a 10-
atom gold nanocluster residing on 4 
layers of TiO2(110) support. Unlike 
previous studies, our computational 
model (SM 2.5-2.6) includes both sup-
port OH groups and adsorbed water 
(13, 14, 18, 29). This model substantial-
ly simplifies the real system, using a 
small Au cluster and a single water 
molecule to represent 3 nm particles 
and multiple water molecules. DFT 
calculations can provide substantial 
insight into likely elementary reaction 

steps, but need to be interpreted in the context of the more complex real 
system. 

The H2O molecule adsorbed on a bridging OH group at the metal-
support interface through hydrogen bonding interactions; this adsorption 
motif was ~1.0 eV more stable than adsorption on the Au cluster and 
~1.4 eV more stable than adsorption on a bridging OH group away from 
the interface (SM 6.1). Although we studied several O2 adsorption and 
activation pathways (Fig. 2, SM 6.2-6.3), we did not find an intermediate 
species with O2 bound only to Au atoms near the metal-support inter-
face. In all cases, an essentially barrier-free proton transfer lowered the 
overall energy of the system, generating H2O2* or *OOH (Fig. 2; “*” 
references species adsorbed to Au). Once *OOH formed, it migrated 
along the Au particle, allowing atoms near, but not strictly at, the metal-
support interface to participate in the reaction. 

The KIE and DFT studies indicate proton transfer in a key reaction 
step, but they do not provide sufficient information to determine if the 
reaction is initiated by adsorbed water or support OH groups. In-situ 
infrared spectroscopy was therefore used to quantify these species (SM 
4.1) and compare catalyst activity to their relative surface concentra-
tions. The non hydrogen-bonded νOH stretching vibration centered at 
3650 cm−1 is exclusively associated with support OH groups, whereas 
the δHOH bending vibration centered at 1623 cm−1 is exclusively due to 
adsorbed water. There is also a broad band centered around 3400 cm−1 
assigned to νOH for OH groups involved in hydrogen bonding that may 
have contributions from both water and Ti-OH (IR analysis in SM 4.1). 

Our catalysis studies do not indicate a direct role for support OH 
groups in the reaction mechanism. Gentle drying with flowing N2 (Table 
1 and Fig. 3A) only removed water and had little effect on the support 
OH bands. Catalytic activity, however, dropped by an order of magni-
tude, indicating that adsorbed water, not support OH, is the key proton 
donor. Further, a constrained ab-initio thermodynamic analysis (SM 2.6) 
indicates that the support OH groups at the metal-support interface are 
thermodynamically unstable relative to gas-phase water under dry condi-
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suggested to be rate determining. These results provide a unified explanation to 
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OH groups, and the metal-support interface. 
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tions, and therefore would be unavailable as proton donors. As water is 
added to the system, the interfacial support OH groups and weakly ad-
sorbed water are equilibrated and ultimately become indistinguishable. 

Several literature mechanisms invoke OH transfer from the support 
to Au (17, 23) as an elementary step. Our experimental and DFT studies 
do not support such a step. The calculated barrier for transferring a Ticus-
OH group to Au (Ea = 1.63 eV, SM 6.5) is too large to be a viable room-
temperature pathway. Further, generating *COOH from *CO and *OOH 
(ΔE = -2.23 eV, Ea = 0.10 eV) is thermodynamically and kinetically far 
more favorable than the reaction between *CO and Ticus-OH (ΔE = 0.60 
eV, Ea = 0.72 eV, SM 6.5). 

To quantify the effects of adsorbed water, we performed a series of 
adsorption, thermogravimetric analysis (TGA), and kinetics experiments. 
IR spectroscopy showed water adsorption on titania (not on Au, SM 
4.1), consistent with DFT calculations (SM 6.1). The adsorption iso-
therm quasi-saturated around 700 Pa (1.7 wt %, 13 molecules/nm2), 
corresponding to roughly 1.5 monolayers of water on titania, suggesting 
a bilayer adsorption structure typical for water (30). The reaction rate 
correlates extremely well with the amount of weakly adsorbed water and 
the reaction order (1.33, Fig. 3B) is substantially larger than the reaction 
orders for CO or O2, (0.01 and 0.1-0.3, respectively, SM 5.1-5.3). 

We further evaluated the reaction kinetics using a Michaelis-Menten 
(M-M) kinetic model (SM 5.2), which provides quantitative metrics that 
characterize heterogeneous catalysts (31). This model helps distinguish 
between changes in the inherent activity of the active site (measured 
with KR –analogous to the conventional KM) and the relative number of 
active sites (associated with νmax). Double reciprocal plots of the O2 de-
pendence data (Fig. 3C) yield KR values that are independent of the wa-
ter coverage (Fig. 3D), indicating that H2O did not affect the inherent 
reactivity of the active sites. The νmax values, however, increased linearly 
with adsorbed water. Since KR was essentially constant, this indicates 
that weakly adsorbed water increased the effective number of active sites 
rather than changing their inherent reactivity. 

Two explanations for increasing the number of active sites are con-
sistent with the DFT studies and recognize the importance of the metal-
support interface (9, 12, 18–23). First, if oxygen binding requires pro-
tons from weakly adsorbed water, then increasing the water coverage 
should increase the number of available protons, and facilitate O2 bind-
ing. Second, the DFT studies suggest that *OOH can interact with Au 
atoms that are near, but not strictly at the metal-support interface. As 
additional Au sites gain access to protons from water, a greater number 
of O2/peroxo binding sites become available. This increase in active site 
density also argues strongly against O atom vacancies on the support 
being the active sites for O2 activation, as surface water would be ex-
pected to rapidly fill those vacancies. 

The conclusion that support OH groups do not directly participate in 
the reaction mechanism requires a new model to explain why the support 
and surface OHs strongly influence CO oxidation activity (13–15, 24, 
25). Our results indicate that the support OH groups’ primary role is to 
anchor active water near the Au particle, and possibly help activate it 
through hydrogen bonding. The relative number of support OHs near Au 
particles and their ability to anchor enough water to facilitate the reac-
tion may partially explain the strong support effects reported in the liter-
ature (3, 17, 22, 23). 

While the DFT results for O2 adsorption are congruent with proton 
transfer as part of the mechanism, they do not explain the observed KIE. 
The *OOH species have moderate direct decomposition barriers (Ea ~0.5 
eV, Fig. 2 and SM 6.3). However, CO-assisted *OOH activation yield-
ing *O and *COOH was found to be extremely facile (Ea = 0.10 eV, Fig. 
2). This O-OH dissociation barrier is lower than the previously reported 
barriers for the related CO-assisted O2* dissociation on supported and 
unsupported Au clusters (10, 13, 14, 18, 32). In stark contrast to the 
predominant literature opinion (16), the extremely low barriers associat-

ed with this pathway suggest that O2 activation is quite facile in the pres-
ence of water and CO. 

To explain the observed KIE and close the catalytic cycle, we ex-
plored possible *COOH decomposition pathways (SM 6.6); Fig. 4 shows 
the two most relevant pathways. In the first pathway, the proton is spon-
taneously transferred from *COOH to the co-adsorbed O* (green, ΔE = -
0.27 eV, Ea = 0.0 eV), leaving *OH on the surface after CO2 desorption. 
Closing the catalytic cycle requires the direct reaction between *OH and 
*CO (ΔE = 0.10 eV, Ea = 0.40 eV, SM 6.4) to yield *COOH, followed 
by *COOH decomposition, which returns the proton and restores the 
active site. The second pathway is initiated by an endothermic proton 
transfer from *COOH to an adsorbed water molecule (simultaneously 
transferring a proton to the support) (purple, ΔE = 0.61 eV; Ea = 0.76 
eV), followed by CO2 desorption. The remaining O* reacts with *CO in 
a well studied reaction (ΔE = -1.03 eV; Ea = 0.65 eV, SM 6.4). 

These pathways are chemically similar, differing primarily in the or-
der of the steps. The reactions between *CO and *O or *OH have fairly 
similar barriers, and both pathways also go through the same endother-
mic *COOH decomposition step. This step is the likely RDS because it 
involves a proton transfer (*COOH to water) and has the highest com-
puted activation energy barrier (movie S1). DFT calculations based on 
this transition state (involving a single water molecule) yielded a calcu-
lated KIE of 2.55 (SM 6.7), which represents an upper limit to the exper-
imentally determined KIE at low water coverage. The predicted lower 
limit of the equilibrium isotope effect associated with this step is 1.08. 
This is somewhat lower than the value we measured at 700 Pa water, but 
is similar to low values previously reported using higher water pressures 
(21, 28). 

The involvement of weakly adsorbed water in multiple mechanistic 
steps is also consistent with the large reaction order (1.3). DFT calcula-
tions also indicate that a second adsorbed water molecule in the vicinity 
of the *COOH species facilitates the proton transfer, which only needs 
to overcome the thermodynamic barrier (ΔE = 0.70 eV, Ea = 0.70 eV, 
SM 6.6). Further, at higher water coverage, rapid proton mobility (33) 
can explain the shift to an equilibrium isotope effect. We also note that 
*COOH decomposition has been identified as the RDS in the related 
water-gas shift reaction on Cu and Pt (34, 35), and that this is consistent 
with reports of NaOH promoting CO oxidation over Au catalysts. (17, 
36) 

The CO oxidation mechanism shown in Fig. 4, along with the struc-
tural model of support OH groups anchoring and activating water near 
Au particles, provide a fresh framework for interpreting previous results. 
This model provides a single active site description that unifies some 
very disparate mechanistic information, accounts for the promotional 
effects of water, and is consistent with previously reported isotope ex-
change studies (21, 27) that indicate that CO and O2 must react directly 
on the Au particles without exchanging O atoms with the support or 
adsorbed water. At the same time, it maintains the importance of the 
support OH groups and the metal-support interface without directly in-
volving them in the reaction mechanism. The likely active sites bear a 
strong resemblance to the WGS mechanism over Au catalysts, where the 
support anchors water near Au-CO sites (6). 

This proposed mechanism explains why the O2 adsorption and acti-
vation steps, which are widely regarded as the critical mechanistic steps, 
have been so difficult to characterize. The fast room-temperature cataly-
sis mechanism requires both water and CO for O2 binding and activa-
tion. Experiments performed without water, particularly UHV and DFT 
studies, ultimately probe different reaction mechanisms than what ap-
pears to be the dominant room temperature pathway on supported cata-
lysts. Similarly, most traditional catalyst studies rarely control or report 
feed water contents, which has likely contributed to the wide range of 
reported CO oxidation activities for Au/TiO2 catalysts, and to the diffi-
culties in understanding the key features of the best catalysts. Finally, 
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this new mechanism brings the interpretation of traditional supported 
catalyst experiments more in line with computational and surface science 
studies, which have largely indicated that the key reaction steps occur on 
Au (7, 9–14, 17, 29), without direct participation of the support. 
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Fig. 1. Water and kinetic isotopic effects on CO oxidation over Au/TiO2 (20°C, 1% 
CO, 20% O2, SV = 36 L/g catalyst/min). (A) Effects of water on the overall reaction 
rate. (B) Reaction rate for protonated (▲H) and deuterated (■D) catalysts in the 
absence of added water (6 trials averaged). (C) Changes in reaction rate induced by 
adding 700 Pa of H2O/D2O. 
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Fig. 2. Potential energy diagrams for O2 binding and O-O bond activation near 
the Au/TiO2 interface. (a) In the absence of H2O (dashed pathway), O2 adsorption at 
the Au/TiO2 interface initiates a spontaneous transfer of two protons, forming H2O2*; 
(b) With an adsorbed H2O (dotted pathway), O-O bond activation leads preferentially 
to O* and *OH; (c) With adsorbed H2O and CO (solid pathway), O-O scission is 
facilitated by nucleophilic attack of *CO, resulting in *COOH (carboxyl). 
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Fig. 3. (A) IR spectra and catalytic activity for gently dried catalysts. (B) Reaction 
order based on gas phase (●) and weakly adsorbed (▲) water (20°C, 1% CO, SV 
= 35 L/g catalyst/min). (C) Double reciprocal plots used in Michaelis-Menten kinetic 
treatment. (D) Michaelis-Menten kinetic parameters vs. catalyst water content. 
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Fig. 4. Proposed reaction mechanism. (A) Potential energy diagram; both 
pathways are limited by a combination of *COOH decomposition and the reaction 
between *CO and *O(H). (B) Schematic representation of the lower (green) pathway. 
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Table 1. Effects of drying treatments on IR spectra and catalytic activity.  

Drying treatment1 Ti-OH 
Area2 

H2O 
Area3 

υ (s−1) 

None 14.3 841.7 0.32 
20°C, ½ hour 14.1 503.0 0.22 
70°C, ½ hour 14.0 227.5 0.18 
20°C, 16 hours 13.9 131.3 0.09 
70°C, 16 hours 13.8 102.2 0.03 
1N2 flowing at 50 mL/min 
23741-3545 cm−1 
33800-1800 cm−1 
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